Kinematis and Kinetics of Foot and
Kinematis and Kinetics of Foot and Unkle during Stait
- foot deing weight bearing does 4 things
(Penny and Burnefield): 1) upright statility dispite an evertharging posture 2) programin is germoted by interaction of selective posture, muscle forces & soft-tissue elasheity
1) upright statility dispite an eventharging posture
2) progression is generated by interaction of
selictive postus, muscle forces & soft-sissue
elishuily '
3) fon impact at orset of each stride
is minimized
4) energy is consurved, minimizery muscular
evergy, use efficient pattans
- fort is principle contact
stance phase foot and and and
Though more proximal strong
- 7 biomechanical phones in gait total
- fort 8 arkle, 3 "rockers" of gait
- strike to midstarce = first and second rocker

I use flexibility of structure to absorb force in terminal - 5 mlm . 3 rd rocker, stiffen structures for free generation Overview of Relevant Anatomy - 2 joints: talocrural (tibiotalan) & subtalan + talocrumal * trucklea of talus fits in mortin of Hb/Fib.

* load bearing occurs between tib and domelik

Shaniw cruhan in talus Sugar supra of talus * No muscle into tales, constrained by medial Stateral ralledis + legaments/tendors * prominently large with aspects of stability × e.g. + alor with increas orteriorly supporting chapifleson * hower, rotated 190 (150-250) esturally, meaning more motion than just hing. 1 Subtalar * stability and motion during locamistan

* oblique and + inability to observe motion stands difficult outside cadeur & bore pin (Inman + * nitered hinge. 1st-2nd rocker, lig IRs

* Ley IR = coloure ER + plater flower + tales IR * Ley IR =

* Creates supply foot for force absorption

* 2-3 rolar, leg FR = Calcered IR, dorsiflerin, take FR

* feet become rigit lever for power and support. - alcaneveuboid + talo navioular joint = dransvern tarsal + level ambulator, transverse tasal opposes subtilier movement * when calcureocuboud + talonewicula are parallel on axis, more mobility is whocked in midfat, adding supplement and keeping 5th metitarisal head in joint. * 2 nd -> 31 1 rocker, opposite respons, locky transverse toused yours * Late strice + pushiff, "windlaw effect" further Jeroins planta fascir for power Overview of lanetic & Kinematiz modeling - quantiteter gust analysis for pathology + 3 non a linear fost markers on foot + When not focused on fout, single revolute joint +
single rigidlody * still hus been useful across fields
when questions are proximal to intricate design

- one approach: makers a lateral shaft of the lateral mallioles, midpoint of 2^M/3rd metatarsals + Statis callibration for virtual knee/goint contes for anthropometric diffs. * identify segment in 30 space, links markes to anatoh; + calculated talocrural joint to 2nd god matter is fout vector * transven plene, plank surface is sagither alignmes + 20 motor, most rocker movement through signal - 18t > 3rd roclar: posterior GRF creeks internal Hartain contravel and rocken 1 internel plenterflexer moment. - 3rd roda, rigid PF propulsion - swing + 30° sagitlal Rom mother (6°) - minmul transves. words, 5-20° + relative to grobal + change from external. ot. moment to intund moment

Healthy and Impaired Feet - assumption: deviations in famoutic/knotic/Euros from healty = less efficient gant + CP: enusy expentiture increased due to anticle motion deficiencies + PTTD with Lendon substitution + medial displacement (Walcould ostwoody * 5 camera pre/post operative measures * Depite firding reductions in cadera, step least, velocity, arkele puch of jower, over & simplified model Work erough + Similar issus in study of, ankle arthro desis * 18/5th melahrsal head represes forefoot in newtral * found reduced ROM, but no positional differences - proof that single risidledy model loent work for patrology + combins taloqual and subtala, loses millfort X e.g. model armers excessive doriflerin from orkle inthat of that footh issues of each - Multi Signert foot models

+ 26 bones, 33 articulations · hinffort. talus, caleanus + talocural l + clinical groupings · milfort: pariula, autoid, amisforms +
talonavious, calcaro culoid joith and intercarbandes · frefort: metataras, phologo, + cuboid/ curcifor articulations. hallux indexidually modeled due to patrology importance + problems: · size of bones (small), can't office makes · cart palpate/no vishe access · Viganut i articulation violate rigid buly I fundamental definition to all models is ZERO * measure of distribution relation to proximal must be zero in all planes

+ easy at thish > pelvis, every with SIMPLE fort
assumption 13 months SIMPLE foot
FIN COMPLEX, one of 3 nutral or "BERO" used:
2 imaged soltin (routed subtales OR vertical titois)
1. comfortable standing 2 imposed position (newtral subtales OR vertical tition) 3. reference orientation of underlying bory anotherry
+ 5 curvert models:
1. Puport
3. Oxford Child) 2. angular calculations
2. Hertelburg 3. Oxford Child 2. angular calculations 4. Landing (RiEtoli) 3. Definition of ZERU 5. Utah
+ Deporton of ZERO by difference
* would require lat-specific or normative
values for clinical interpretation
Chart Notes
- Leardini: highet plant /dosiflesow variability - Wat: highest forefort ab/aduch a variability
118ch: highest boufout abfaduction variability
- but loved with in swing love
- most had high variability in swing, low
deving stance phase

+ alterative: bory larlmak bereak * Lundberg etal: ratio ogaque marken implated + passen motor 5.11 dispos understandon of kinemators (bila votahor at taloumed through Bimollesten asis midpoint) * invasive, can't be done clinically + Milwarke Food Model (MFM) * ure weightheauty radiographs for precise bone seemed means Segment means * un washi deury train + modin captine to rever boon axis system means. * hard to use, but excellent standard + all models agree on sugital hindfort flexin, extension, forefort looking and extension and for off shifts in word strong very plane Fuhrer Research - Biplan Fluoroscopy + current observability based medico led to 2,2-14,9 + Use 2 x-ray somes to combin intend boy bracking with landmonths to arak new Kinematic models + workinuar exposure to radiation is problematic

* try weightbearing come beam CI Scans + MRI * still ne conserve in botal coolink orces in ruhal, ongoing - Modeling + kinematics advancements studied from maltisegnas models + joint kinetice limit d: red jost centers, stiffing inerfial properties, etc. + force plaks provide GRF, too big don't is close food? + Early work SIGH & Wirth: Separate baloning & * mono exertile DOF joints, 7 nonlinea spring + dampa in parallel for planta fascin * collected data from differen pats of foot GRE in walle cycles (kigh variability) Alledobarographs planter presum study to isolak CIRF vectors across foot aligned with wall cycle. * assumption of proportionally used to distribute medic laked & author patrion steamy from in question + Biomechanical modeling (SIMM, OPENSIM, ANYBODY)
and MTU; and reasons about faults from bottom up