THE RIGHT-TURN RACER

A foray into Monte Carlo Methods

PROBLEM STATEMENT

- Car has velocity range of 0 to 4, but can only change by -1 to 1
- Car can't stall (velocity vector goes to 0,0)

SOLUTION

Implement *Monte Carlo method* using an *off-policy* strategy with *weighted importance* sampling.

MONTE CARLO METHOD

- having a model of the world, but no understanding of its *dynamics*
- Must *sample* it rather than raw dog it with math

OFF-POLICY STRATEGY

- the way I choose to *explore* the world will be different than how I choose to *exploit* it
- explore: *behavior policy*
- exploit: *target policy*

WEIGHTED IMPORTANCE SAMPLING

 my likelihood of seeing the return from this state while exploring is *different* than with my target policy by some *sampling ratio*

runner		
	+++++++++	_
	+++++++++	
		The second second
+++++++++++++++++++++++++++++++++++++++		_
+++++++++++++++++++++++++++++++++++++++		
	+++++++++++++++++++++++++++++++++++++++	
ninen2025 non mer osers/joraaverchanar/	rocuments/opensini/sis/wour	із/кајадоран кајадоранатопппет. 023.

1790/100000 [00:51<00:09, 2897.35it/s] 2969/100000 [00:51<00:09, 2936.18it/s] 3843/100000 [00:51<00:09, 2799.35it/s] 4727/100000 [00:52<00:08, 2895.67it/s] '5907/100000 [00:52<00:08, 2939.37it/s] '6806/100000 [00:52<00:07, 2961.82it/s] 7994/100000 [00:53<00:07, 2944.95it/s] '8875/100000 [00:53<00:07, 2922.65it/s] '9767/100000 [00:53<00:06, 2943.90it/s] 0959/100000 [00:54<00:06, 2970.02it/s] 1859/100000 [00:54<00:06, 2979.80it/s] 2768/100000 [00:54<00:05, 3015.00it/s] 3991/100000 [00:55<00:05, 3049.11it/s] 4910/100000 [00:55<00:04, 3053.12it/s] 5832/100000 [00:55<00:04, 3059.77it/s] 6755/100000 [00:56<00:04, 3054.91it/s] 7982/100000 [00:56<00:03, 3063.16it/s] 8901/100000 [00:56<00:03, 3049.88it/s] 9821/100000 [00:57<00:03, 3059.28it/s] 0740/100000 [00:57<00:03, 3016.97it/s] 1958/100000 [00:57<00:02, 3036.75it/s] 2873/100000 [00:58<00:02, 3040.09it/s] 3789/100000 [00:58<00:02, 3032.26it/s] 4710/100000 [00:58<00:01, 3042.19it/s] 5932/100000 [00:59<00:01, 3044.29it/s] 06849/100000 [00:59<00:01, 3043.84it/s] 7767/100000 [00:59<00:00, 2892.91it/s] 88/ **10**00 [01:00**∠0**:00, 3018.4it/s]

But what does this look like while training?

WHAT PROBLEMS WERE SOLVED FOR ME?

Reward Design

- Decision was to reward -1 per timestep until finish was reached
- Banging into side of track means random restart on start line, NOT END OF EPISODE

WHAT PROBLEMS DID I HAVE?

State Design

Using a simple array to represent the grid made the state space SPARSE, confusing me about the effectiveness of the algorithm

1%	rorcen	ientLearni	ngsutton	Barto	» python	racetra	ck_agen	с.ру
pisode 1000: Policy changed in 6.79% of states			Visuali					
2%1 pisode 2000: Policy changed in 3.21% of states		Poses >						
pisode 3000: Policy changed in 2.08% of states								
pisode 4000: Policy changed in 1.84% of states	30	0.000						
pisode 5000: Policy changed in 1.34% of states	120							
pisode 6000: Policy changed in 1.46% of states	40							
pisode 7000: Policy changed in 1.26% of states	140							
pisode 8000: Policy changed in 1.00% of states	50							
pisode 9000: Policy changed in 1.14% of states								
pisode 10000: Policy changed in 1.09% of states								
pisode 11000: Policy changed in 0.95% of states								
pisode 12000: Policy changed in 0.82% of states								
pisode 13000: Policy changed in 0.86% of states	5							
14% pisode 14000: Policy changed in 0.78% of states	5							
pisode 15000: Policy changed in 0.73% of states	5							
16% pisode 16000: Policy changed in 0.64% of states	150							
17% pisode 17000: Policy changed in 0.75% of states	1							
18% pisode 18000: Policy changed in 0.61% of states	5							
19%1 pisode 19000: Policy changed in 0.61% of states								
20% pisode 20000: Policy changed in 0.63% of states								
21% pisode 21000: Policy changed in 0.74% of states								
22%1 pisode 22000: Policy changed in 0.64% of states								
23% 23000: Policy changed in 0.67% of states								
24%								
25% prisode 25000: Policy changed in 0.52% of states			Messag	na Mo	Scripting	Shell Wind	ow Dito late	st for
26% pisode 26000: Policy changed in 0.55% of states	-			d mode			ich2023	3 from
26%]								

82%1								
Episode	85000:	Policy	changed	in	19.78%	of	states	
86%1								
Episode	86000:	Policy	changed	in	19.78%	of	states)2	3
87%			Incodeg	4	- yuuuu			
Episode	87000:	Policy	changed	in	19.78%	of	states	
88%1								
Episode	88000:	Policy	changed	in	19.78%	of	states	
89%1								
Episode	89000:	Policy	changed	in	19,79%	of	states	
90%1								
Episode	90000:	Policy	changed	in	19.79%	of	states	
91%								
Episode	91000:	Policy	changed	in	19.80%	of	states	
92%1			1303/5	11-4-	0000		ul 24, 202	. 2
Episode	92000:	Policy	changed	in	19.80%	of	states	
93%1								
Episode	93000:	Policy	changed	in	19.80%	of	states	
94%								
Episode	94000:	Policy	changed	in	19.81%	of	states	2
95%1								
Episode	95000:	Policy	changed	in	19.81%	of	states	
96%								
Episode	96000:	Policy	changed	in	19.81%	of	states	
97%		AS	ASHULO	sn	Snilega		av zz, zuz	Z
Episode	97000:	Policy	changed	in	19.83%	of	states	
98%1								
Episode	98000:	Policy	changed	in	19.83%	of	states	
99%1								
Episode	99000:	Policy	changed	in	19.83%	of	states	2
100%								
Episode	100000	: Policy	/ changed	l ir	19.849	6 of	states	
100%								

WHAT PROBLEMS DID I HAVE?

Q-value Initialization

Off-policy MC control, for estimating $\pi \approx \pi_*$

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \in \mathbb{R}$ (arbitrarily) $C(s,a) \leftarrow 0$ $\pi(s) \leftarrow \operatorname{arg\,max}_{a} Q(s, a)$ (with ties broken consistently) Loop forever (for each episode): $b \leftarrow \text{any soft policy}$ Generate an episode using b: $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ $W \leftarrow 1$ Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$: $G \leftarrow \gamma G + R_{t+1}$ $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} \left[G - Q(S_t, A_t) \right]$ $\pi(S_t) \leftarrow \operatorname{argmax}_a Q(S_t, a)$ (with ties broken consistently) If $A_t \neq \pi(S_t)$ then exit inner Loop (proceed to next episode) $W \leftarrow W \frac{1}{b(A_t|S_t)}$

WHAT PROBLEMS DID I HAVE?

Q-value Initialization

- The value estimator for the best next action is tied to the reward
- Initializing only positive values made episodes learning useless with a negative only reward

Q-value Initialization

- Q = [30, 10, 60] at start
 - max is 60, action = 2
- Q = [30, -1, 60] after evaluating final step
 - max is 60, action = 2
 - best action != action taken, ignore rest of episode
- continue until you play russian roulette

FIN

Code available here

Presentation courtesy of reveal.js